
are fulfilled in correspondence with the dispersion relations (6). in this case a decay 
instability [5] takes place. From analysis of the dispersion curves (6), it follows that 
fulfillment of conditions ~ii) ~ ~ and (12) is possible for q > 2k,. in particular if k 0 < ql < 
k, (let ql ! q2), it is possible to consider that ~i(ql) = ~0 = c2( i - ~2)k~ for the flexure 

branch [wi[q) = ~z2[q) and also ~2~q) = ~2~q)]~ Then by using (i0), we find from ~Ii) and (12) 
that m2 = m - w0, q2 = (~ - 2 ~0) I/4 (ch) -I/2, and ql = q - q2" If we take q < 2k, for the 
same region of ql values and consider that ~(q) < m(2k.~) = 2~0, we obtain w i + m2 > m. For 
values ql < k0, such that mi(ql) < m0, Eqs. (ii) and (i2) can be fulfilled only if q >> k,. 
The analogous situation arises in the case where the first longitudinal mode is selected for 
the first wave [~i(q) ~ ~l(q)]. 

Finally by summarizing the results obtained, we can conclude that a packet of flexure 
waves in a cylindrical shell is unstable in the following regions of wave n~nbers: 0 < q < 
kb, k, - a < q < q0, and q > 2k,. 
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ANALYSIS OF THRESHOLD-FREE FRACTD~E OF MATERIALS ON REFLECTION 

OF A COMPRESSION PULSE FROM A FREE Sb~FACE 

A. V. Utkin UDC 532.593 

investigations of spaiiing phenomena yield information about the resistance of materials 
to fracture under microsecond loads. The most reliable and informative method is the method 
in which the velocity of a free surface is recorded continuously [i]. Figure 1 shows results 
of such experiments for plexiglass and rubber (curves 1 and 2) [2, 3]. The character of the 
spaiiing of piexiglass is typical for solids. After the shock wave reaches the free surface, 
the velocity profile repeats the shape of the compression pulse in the sample. When the 
tensile stresses reach a critical value, the material fractures, the stresses in the fracture 
zone decrease, and there appears a compression wave, which reaches the surface in the form 
of a spaliation pulse. The subsequent velocity oscillations are due to the circulation of 
compression and rarefaction waves in the spaiied plate. The fracture stress is determined 
by the difference between the maximum velocity of the surface and the velocity in front of 
the spaliation pulse [i]. 

A fundamentally different result was obtained for rubber. According to Fig. i, in this 
case the velocity decreases monotonically and characteristic oscillations are not observed. 
Since there is no clearly pronounced spaiiation pulse, there arises the question of how the 
fracture process should be characterized, if the strength of rubber were negligible, then 
after the shock wave reaches the free surface the velocity of the surface would remain con- 
stant. The dashed line in Fig. i shows the velocity profile, constructed assuming that the 
strength of rubber is high. The experimentally observed time dependence differs from the 
extreme cases by high and negligibly low dynamic tensile strength. The sample remaining 
after this experiment did not exhibit any clear indications of fracture. 

it is known [4, 5] that rupture of eiastomers is preceded by formation of microscopic 
nonuniformities in the sample, which starts at stresses much lower than the rupture stresses. 
The formation of nonuniformities is in itself still not fracture. Thus, in tests under tri- 
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axial stretching of vulcanizates of natural rubber [5], pores appeared under stresses of 1-3 
MPa and very small deformations. After this, the samples underwent further deformation of 
several hundreds of percent, accompanying an increase (with low modulus) of the tensile 
stresses. For this reason, rubber is an example of a medium which has zero fracture threshold 
but can nonetheless withstand quite high tensile stresses (of the order of i00 MPa). The 
method for determining these stresses in a situation similar to that presented in Fig. 1 (curve 
2) is unclear. 

in this paper we analyze shock-wave processes in media with zero fracture threshold with 
reflection of a compression pulse from the free surface and we establish a relation between 
the tensile stresses and the experimentally measured velocity profile. 

Formulation and Solution of the Problem. We now consider in the acoustic approximation 
the evolution of a triangular compression pulse after the pulse is reflected from the free 
surface of the sample, which fractures under negative pressure. Suppose that fracture starts 
with zero tensile stresses and is described by a specific pore volume Vpore. The total spe- 
cific volume of the medium is equal to the sum of Vpore and the specific volume of the con- 
tinuous component Vcon: v = Vpore + Vcon. We employ the simplest possible fracture kinetics: 

the rate of change of Vpore is a linear function of the pressure P and is equal to zero if 

P > 0 and Vpore = 0. The system of equations of hydrodynamics, closed by the kinetic equa- 

tions and the equation of state, has the following form in Lagrangian variables: 

av i au ~ 0 ,  a~ 1 a p _  O, 
at Po ah a-/-+Po a~ 

_ _  ^~c 2 / t / dVp~ + 2----~ =P O, P = V0 0 [~0 -- 0 + Ppore/' 
@0c0r~ 

( i )  

where t is the time; h is the Lagrangian coordinate; u is the mass velocity; P0 and c o are 
the initial density and velocity of sound, respectively; and ~ is the characteristic relaxa- 
tion time of the fracture process and corresponds to bulk viscosity D = P0C~TD. 

Figure 2 shows the flow pattern in the t-h plane. In region 1 there is no interaction 
between the incident wave and the reflected wave, and the coordinate and time dependence of 
the mass velocity and pressure corresponds to a triangular compression pulse: 

u ( h ,  t )  =- u o - -  k ( c o t  - -  h ) ,  P ( h ,  t)  =- p o c o u ( h  , t ) .  

Here u 0 is the maximum mass velocity; k = const. 

in region 2 the incident pulse interacts with the pulse reflected from the free surface 
h = 0, and this interaction results in the appearance of tensile stresses. The flow is deter- 
mined by solving system (i) with boundary conditions at h = 0 and h ~ -m and initial condi- 
tions on the C characteristic, on which the functions under consideration, with the exception 
of Vpore, undergo a jump. We shall find the solution in the region 2. For this, we eliminate 
from Eqs. (i) Vpore and v and replace the independent variables: T = t + h/c 0 and x = h. 
Then the region 2 is mapped on the fourth quadrant of the T--x plane: T > O, x < O. Laplace 
transforming the obtained system of two partial differential equations i~ T yields a system 
of ordinary differential equations: 

730 



.; ( t= 
d--7+ c o + s +  "SJPoC~ Po% 

e~, ! ~ + Po s~ = -~. (P (x, O) + Oocou (x, 0)) d--~ "1- c o 

t2) 

where s is the Laplace transform variable and u and P are the Laplace transforms of the mass 
velocity and pressure, respectively. The initial values of u and P in the limit T ~ 0 are 
transferred to the right-hand side of Eqs. (2); they appear in the form of a combination 
that is a Riemann invariant [6], so that it is not necessary to determine separately u and P 
to the right of the jump on the C characteristic: they will be found directly from the solu- 
tion of the system of equations. The value of the invariant is found from the condition of 
continuity on the jump (since Vpore ~ 0 as T ~ +0) from its value in the region i. According 
to Eq. (i), we obtain 

P ( x ,  O) -~- poCoU(X, O) = 2poCo(U o + 2 k x ) O ( x  - -  xo ) ,  

where ~z o[x/ is the Heaviside unit function and x 0 = h 0 is determined from the condition of 
intersection of the tail C+ characteristic and the C_ characteristic: x 0 = -c0~ = -u0/(2k). 

The solution of the system of Eqs. (2) with the boundary conditions P = 0 at x = 0 and 
and u remain finite as x ~-~ has the form 

f)  (x, s) = - -  4kpoc ~ (O (x - -  zo) - -  exp  ()~ix)) Co~ (~u - -  ~2) X 

X ( 0 (x - -  %) - -  t exp  ()~l (x - -  Xo) ) 0 (z - -  ~1 ~: %) oxp (L2 (x - -  xo) ) + 

+ ~ exp  (%1x- -  Lzxo)) ] ;  

--I - ~ c  u (x, s) = 2~ 2 (x - -  s: o + cor~) 0 (x - -  xo) ~'~ - -  o~T,~ e i p  ()~lx) - -  
s $ 

0 (x --  %) - -  I 0 (x - -  %) exp  ()~2 (x - -  xo) ) - -  )'i exp  (1~1 (x - -  xo) ) 

_ t1~.~ exp  ()hx -- E2xo)], 

= - ,/,o • V s (, + 

(3) 

k4) 

When analyzing the fracture process, it is important also to know the distribution of 
the specific volume of the pores, whose Laplace transform is 

A ~ 2 2 

Vpore = -- P/(~oCoTtts). (5) 

Transforming from the transforms to the original functions and returning to the variables 
t and h, we find the solution in the fracture region. Some results, however, can be obtained 
by analyzing Eqs. (3) and (4) directly. For example, using the well-known property of the 
Laplace transform [7] lim~(s) = F(0) , we determine the pressure and mass velocity to the 

right of the jump along the C characteristic: 

P------4kP~176176176 2%.. ] ~6) 

" [ h--boX ] 
l_ ~ Co'Ctt ~2co'r~/  

An analogous result for the pressure for h E h 0 was obtained in [8] in an analysis of the 
conditions on the jump. 

The general solutions are quite unwieldy. For this reason, we investigate in greater 
detail the particular cases which are of greatest practical interest, it was noted above 
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that the time dependence of the velocity of the free surface is recorded experimentally, so 
that it is this dependence that must be determined. Using the well-known formulas of the 
inverse Laplace transform and the properties of the Laplace transform itself [7, 9], we ob- 
tain the following expression for the pressure for h ! h 0 and the velocity at h = 0: 

f P ( h ,  t )  _ z 2 _ _ = :  dcPoeo'~ t e x p ( - - - ~ ) T e x p ( - - T ) F ~ \  2--~ ] al a~ ( t + h / c o l  

2 2~t~ , a2 -} -7F2\  ~ ,a~ 0(t--2" 0 ; 

u (O, t) 2uo - -  4kcj~  [cl)l (2~-) - -  o2 ( t  -- 2~O (t--2~) ], F1(x ) . iexp ( - -z ) I~(  V-~-z(z + - ~ j  ) /  ~/z (z + ~l) dz, 
0 

F~ (x, (z) = exp (-- x --  a/2) ~ I o ( ~ f ~ ) )  [Io (x - -  z) + I 1 (x - -  z)] dz, 
0 

d) 1 (x) : exp (-- x) [2xI~ (x) + (t + 2x) I o (x)] - -  1, ( 9 )  
~c 

9 

al = --h/(coT~), o~ = (h --  ho)/(cJJ, rx 3 = --(h q- ho)/(Co'~a) 

w h e r e  i 0 and  i z a r e  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  z e r o t h  and  f i r s t  o r d e r s .  

F o l l o w i n g  Eq.  ( 5 ) ,  we w r i t e  t h e  s p e c i f i c  v o l u m e  o f  t h e  p o r e s  i n  t h e  f o r m  

T 

Ypore(X, T) = --  S ~ (x, T)drl(poC~r, ). ( 1 0 )  
0 

Analysis of the Solution and Comparison with Experiment. We now investigate the depen- 
dence of the velocity of the free surface on the relaxation time of the fracture process. For 
fixed t and ~DI ~n 0 it follows from Eq. (9) that u(0, t) ~ 2u 0, as should be for a medium with 
no strength, the second limiting case (~ ~ =) we o~ta~n thar u(0, t 2u 0 - 2kc0t for 
t < 2~ and u(O, t) = 0 for large t, which corresponds to motion in the absence of fracture. 

We now consider the tmme aependence of tne velocity ~or fmxed ~. Ana]~s~s o~ mqs. k~) 
snows  t h a t  an  n -~ o o  ]~tu, z )  ~ e c r e a s e s  m o n o n o n ~ c a z •  a p p r o a c h i n g  z e r o  a s  •  ~n t h e  po~n  
t = 27 there is a break on the velocity profile, and the jump in the derivative has the form 

The jump is more pronounced the longer the relaxation time. if the break in the velocity can 
be recorded experimentally, then the relation (ii) can be used to estimate the value of 7~. 
As t ~ 0 u(0, t) touches the velocity profile which would be observed in the absence of frac- 
ture. As a result, it is impossible, in principle, to determine the fracture threshold in 
the case when the threshold is small and the characteristic spailing pulse is not recorded 
on the experimentally obtained profile. 

We now consider the time dependence of the velocity for t < 2x. in this case, the rela- 
tion (9) simplifies significantly, since the second term in brackets is equal to zero and 
u(0, t) is expressed explicitly in terms of modified Bessel functions, tabulated values of 
which are presented, for example, in [9]. Velocity profiles are constructed in Fig. 3 from 
formula (9) in the dimensionless variablesu(0, t)/2u 0-t/27with~u/T = 0.01, 0.02, 0.I, I, and 
(lines 1-5). Since ~ determines uniquely the dependence u(0, t), we consider the inverse 
problem: we estimate the relaxation time from the velocity at t = 2T in the approximation 
x~ << 7, which is of greatest practical interest. Using the asymptotic expansion of the 
modified Bessel functions for large values of the argument [9], we find 

U(0,2T) = 2 u  o I - -  7 = ~ Sn �9 . . . .  

introducing the notation e = (2u0 - u(0, 2~))/2u 0 and solving Eq. (12) for 7~, we obtain 

~--~ ~ e~[ I+ ~ ~  -%-~+~(5n--2)e~+'6~ ..]. (13) 
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The relation (13) makes it possible to determine the relaxation time directly from the experi- 
mental velocity profile. For ~ < 0.3 the first two terms of the expansion give an accuracy 
of 6%. 

We now investigate the pressure distribution in the fracture region. For simplicity we 
consider the part of the distribution which directly affects the velocity profile for t < 2x: 
t - 2x - h/c 0 ! 0 (below the dashed line in Fig. 2). Then the last two terms in expression 
(8) are equal to zero. We shall show that if xg << t + h/c 0 the pressure is practically 
constant in the fracture region, indeed, the partial derivative of P with respect to time 
has the form 

~p --2kpo%hVT-~-~ exp((-t-~ VtU--h2/c~]2X~) 
0-T = v h V 4 )  " 

i.e., it is exponentially small. Therefore, in the approximation under consideration the 
pressure is constant and is equal to its value on the jump, determined by the relation (6): 

P ~__ - -  4kp0c~ , .  (14) 

Near t h e  f r e e  s u r f a c e  ( ~ inl << c o t )  t h e  p r e s s u r e  d rops  t o  z e r o  l i n e a r l y  as  a f u n c t i o n  of  h:  

P ~_ 4kpocoh , t >~> ~ ,  ~ z 5 j 

Using Eqs. ~lJ)'~ and (''~i4j, we find the following relation for the tensile stress as a 
function of the velocity at t = 2T: 

o[ ~ .~(5~--2) e 2 + . . ]  (16) P:--~-p0c0u0e'[i +-~e+ 64 " ]" 

The relation (16) replaces the well-known formula for determining the spallation strength 
[i], in the sense that it makes it possible to find the tensile stresses in the fracture 
zone from the measured velocity profile. This, however, does not mean that the total frac- 
ture of the medium (with formation of a spall plate) will occur when the stress exceeds the 
threshold value. On the basis of the model examined here, it is more logical to conjecture 
that the material ruptures when the specific pore volume reaches its critical value. 

The coordinate and time dependence of Vpore is given by the relation (i0). in the ap- 
proximation of small ~p, when the pressure is practically constant in the fracture region, 
the relation (i0) implies 

Upore (h, t) ~_- (4k&0)(t + h/co), (17)  

Near t h e  f r e e  s u r f a c e  ( l h l  << c o t )  t h e  p o r o s i t y  d rops  t o  z e r o :  

(h, t)_.~ -- Sk__~h , / - j _ ~  ~ p0c~ v " ' ~ '  t>~,. (18) 
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According to Eq. (17), the law of growth of the pores does not depend on the relaxation time, 
and it can be found directly from an analysis of the flow in a medium fracturing without 
resistance. 

The section h", in which the specific pore volume reaches its maximum value, initially 
lies near the free surface and moves with time into the volume of the sample according to a 
law which can be estimated by equating expressions (17) and (18): 

k].~7 h *  ~ --co ] /  ~ t / 2 .  " ~ " 

introducing the critical value of the specific pore volmne Vpore, at which the material 

ruptures, the corresponding time and thickness of the spall plate can then be estimated from 
the relations (17) and (19). 

We now employ the results obtained above to describe the experimental data on the rupture 
of rubber under loading by a shock wave [3]. The initial density and velocity of sound are 
1.34 g/cm ~ and 1.5 km/sec, respectively, and the amplitude and width of the compression pulse 
are u 0 = 290 m/sec and 2T = 6.6 Dsec, respectively. From the profile of the velocity of the 
free surface (curve 2 in Fig. i) we obtain the value ~ = 0.21, which makes it possible to 
determine, from formula (13), the characteristic relaxation time of the rupture process ~ = 
0.068 ~sec. The velocity of the free surface, calculated with these parameters from the 
relation (9), is presented in Figs. 1 and 3 (dashed line). One can see that the calculation 
is in good agreement with experiment. 

The solutions (8) and (i0) for the pressure and specific pore volume are quite compli- 
cated. For this reason, the system of equations of gas dynamics (i) was modeled numerically 
by the method of characteristics [i0], using splitting according to physical processes, in 
order to determine P and Vpore. The velocity profile of the free surface, calculated in this 

manner, is identical to the dot-dashed line in Fig. i. The corresponding coordinate distribu- 
tions of the pressure and specific pore volume are presented in Fig. 4 with a time step of 
1Dsec (the numbers indicate the times in microseconds and the dashed lines are the pressure 
and pore volume constructed from formulas (14), (15) and (17), (18) at t = 3 ~sec). The 
approximations (14) and (18) describe quite accurately the maximum value of the tensile stres- 
ses and the linear nature of the increase in the specific pore volume as a function of time 
and the coordinate. 

The amplitude of the compression pulse in the experiment with rubber is 0.9 GPa. in 
this pressure range it can be seen that the shock adiabatic curve is nonlinear and the acous- 
tic approximation can lead to appreciable errors. At the same time, the tensile stresses in 
the fracture zone are low and it is important to know the velocity of sound under normal con- 
ditions, it can thus be expected that taking into account the pressure dependence of the 
velocity of sound will not produce any fundamental changes in the results, indeed, the dashed 
line in Fig. i shows the result of the calculation of the velocity of the free surface using 
the equation of state constructed for rubber on the basis of the real shock adiabatic curve 
[3, ii]. The numerical modeling was performed using a ripple-through computational scheme on 
a checkerboard grid with artificial viscosity [12]. in order to obtain the best agreement 
with experimental data the relaxation time was reduced approximately by 10% (~D = 0.06 Dsec) 
compared with the calculation in the acoustic approximation. The distributions of the pres- 
sure and specific pore volume remain similar to those presented in Fig. 4. Only anomalies 
associated with the pressure dependence of the velocity of sound appear: the right-hand 
boundary of the fracture region moves more rapidly into the volume of the sample, and because 
the front of the rarefaction wave becomes diffuse the tensile stresses decrease in absolute 
magnitude with decreasing h and do not remain practically constant, as happens in acoustics. 

Thus, on the basis of our analysis of the process of pore growth in a medium with zero 
fracture threshold, we have derived relations which make it possible to find the bulk fracture 
viscosity and the effective tensile stresses (formulas (13) and (16)) from the experimentally 
measured profile of the velocity of the free surface of the sample under loading by a shock 
wave. 
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EFFECTIVE-FIELD METHOD IN THE STATICS OF COMPOSITE MATERIALS 

V. A. Buryachenko and V. Z. Parton UDC 534.4 

In this paper we study a linearly elastic composite medium consisting of a uniform 
matrix containing a random number of inclusions which have an arbitrary shape and nonuniform 
bulk mechanical properties. The classical problem [i-3] of estimating the effective moduli 
and average stress concentrators on inclusions is solved. The approach proposed in this 
paper is an extension of the effective-field method (EFM), presented in [4-6] for the case 
when the mechanical properties of the matrix are the same as these of the comparison medium. 
The generalized EFM includes as particular cases the well-known methods of structural me- 
chanics: the effective-medium method [3], the generalized singular approximation method [3], 
the conditional moment method [7, 8], the Mori-Tanaka-Esheiby method [9, i0], and methods 
based on variational principles [2]. 

i. General Equations. Consider a macroscopic region w with characteristic function W 
and containing a random set X = (Vk, Xk, ~k) of ellipsoids v k with characteristic functions 

V k and centers Xk, forming a Poisson set, semiaxes a~(a~ > a~ >_ a~), and Ruler angles ~k- 

The local equation of state of the material, relating the stress tensor o(x) and the strain 
E tensor E~x), is given in the form 

(y(x) ---- L(x)e(x),  ( 1.  i ) 

where L ( x ) ,  which  i s  a t e t r a v a l e n t  t e n s o r  o f  t h e  e l a s t i c  m o d u l i ,  i s  assented t o  be homogeneous 
[ 

in the matrix v~ v: h~ vh): L(x) = L ~~ in each inclusion Vk, where k = i, 2, .... 

and L(x) = L (k) (x) is, generally speaking, an inhomogeneous function of the coordinates. 
Substituting Eq. (i.i) into the equation of equilibrium with given boundary conditions on the 
displacements u(x), we obtain a differential equation for the displacements: 
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